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Multi-objective optimization tries to optimize multiple objectives simultaneously

min𝒔∈# (𝑓$ 𝒔 , 𝑓% 𝒔 ,… , 𝑓& 𝒔 )

Pareto front

z

x

y

𝑓$

𝑓%

better 𝑓!
better 𝑓"worse 𝑓!

better 𝑓"

𝒙 dominates 𝒛: 𝑓" 𝒙 < 𝑓" 𝒛 ⋀ 𝑓# 𝒙 < 𝑓# 𝒛

𝒙 is incomparable with 𝒚: 𝑓" 𝒙 > 𝑓" 𝒚 ⋀ 𝑓# 𝒙 < 𝑓# 𝒚

Goal: finding the Pareto front or its good approximation 

Pareto front: the set of objective vectors of all the Pareto optimal solutions, 
which represents different optimal trade-offs between objectives

Pareto optimal solution: a solution that cannot be 
dominated by any other solution in 𝑆
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Multi-objective optimization has many applications:

Buy cars Search neural architectures
• Max: performance
• Min: price

• Max: accuracy
• Min: network complexity

Classifier

conv
3×3

avg
3×3

max
3×3

conv
5×5

“cat”
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The population-based nature makes EAs suitable for 
solving multi-objective optimization problems
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The general structure of EAs
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MOEAs have been widely applied for solving real-world multi-objective tasks

High entropy alloy design
[Menou et al, Materials and Design’18]

Gasoline engine design
[Fujita et al, DETC’98]

Supply chain design
[Benyoucef and Xie, Springer’11]

• Max: strength
• Min: density

• Max: service quality
• Min: cost

• Max: acceleration ability
• Min: fuel consumption
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Pareto dominance based: NSGA-II, SPEA-II, …

Performance indicator based: SMS-EMOA , HyPE, ….

Decomposition based: MOEA/D, ….

K. Deb, A. Pratap, S. Agarwal and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 2002. (Google scholar citations: 47549)

N. Beume, B. Naujoks and M. Emmerich. SMS-EMOA: Multiobjective
selection based on dominated hypervolume. European Journal of
Operational Research, 2007. (Google scholar citations: 2009)

Q. Zhang and H. Li. MOEA/D: A multiobjective evolutionary
algorithm based on decomposition. IEEE Transactions on Evolutionary
Computation, 2007. (Google scholar citations: 8329)
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𝜇 + 𝜇 selection ?

Framework of NSGA-II:
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Population Update of NSGA-II:
Use non-dominated sorting and crowding distance sorting to rank the solutions, and 
delete the worst ones

the current 
population

𝑅$

𝑅%

𝑅*
𝑅+

the offspring 
population

non-dominated 
sorting 

NSGA-II

𝑃

𝑃′
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𝑓$

𝑅$

𝑅%
𝑅*

𝑅+

𝑓%

Solutions with smaller rank are better

NSGA-II

• solutions in 𝑅$ (has rank 1): cannot be 
dominated by any solution in 𝑃 ∪ 𝑃′

• solutions in 𝑅% (has rank 2): cannot be 
dominated by any solution in (𝑃 ∪ 𝑃′)\𝑅$

• ⋯

Partition the solutions in 𝑃 ∪ 𝑃, into 𝑅$, 𝑅%, … , 𝑅-

Non-dominated sorting

Rank reflects the convergence of a solution



http://www.lamda.nju.edu.cn/qianc/

http://www.lamda.nju.edu.cn

Population Update of NSGA-II:
Use non-dominated sorting and crowding distance sorting to rank the solutions, and 
delete the worst ones

the current 
population

𝑅$
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𝑅*
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sorting 
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distance 
sorting
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For each objective 𝑓.:
• sort the solutions w.r.t. 𝑓. (ascending)
• for each solution 𝒙, compute the normalized 

distance w.r.t. 𝑓., and add the distance to the final 
crowding distance value of 𝒙

normalized distance:
• if 𝒙 is sorted in the first or last position, set the distance to ∞
• otherwise, set the distance to /! 0122(𝒙) 6/! 7892(𝒙):;< /!6:=> /!

𝑓$

𝑅$𝑓%

𝑓! 𝑦 − 𝑓! 𝑧

𝑓"(𝑧) − 𝑓" 𝑦

NSGA-II

𝒙

Crowding distance assignment

Crowding distance reflects the diversity of a solution

Solutions with larger crowding distance are better

Normalization

y

z
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Population Update of NSGA-II:
Use non-dominated sorting and crowding distance sorting to rank the solutions, and 
delete the worst ones
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Framework of SMS-EMOA:
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Population Update of SMS-EMOA:
Use non-dominated sorting and quality indicators (e.g., hypervolume) to rank the 
solutions, and delete the worst solution

the current 
population

one 
offspring 
solution

hypervolume
loss calculation
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𝑓$

𝑅$𝑓%

𝐻𝑉 𝑅!

Hypervolume loss of 𝒙: 
• decreased hypervolume value of the 

solution set when 𝒙 is removed

Solutions with larger hypervolume loss are better

Hypervolume loss calculation

Hypervolume: volume of the space 
dominated by a set of solutions, 
reflecting the convergence and 
diversity of the solutions

𝑓$

𝑅$𝑓%

𝛥 𝒙 = 𝐻𝑉 𝑅!
−𝐻𝑉(𝑅! ∖ {𝒙})

𝒙
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Population Update of SMS-EMOA:
Use non-dominated sorting and quality indicators (e.g., hypervolume) to rank the 
solutions, and delete the worst solution

hypervolume
loss calculation

the current 
population

one 
offspring 
solution

the next 
population𝑃

𝒙′

𝑅$

𝑅%

non-dominated 
sorting 
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Framework of MOEA/D:

multi-objective problem

decomposition

...
optimization by collaboration

single-objective 
sub-problem 1

single-objective 
sub-problem 2

single-objective 
sub-problem 𝑁

solution 1 solution 2 solution 𝑁...
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the current 
and 

neighboring 
solutions

one 
offspring 
solution

replace the 
worse solutions

Population Update of MOEA/D:
For each single-objective sub-problem, the newly generated solution will replace the 
worse solutions

For each single-objective sub-problem
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The prominent feature in population update of MOEAs: greedy and deterministic
• the next-generation population is formed by selecting the best-ranked solutions

Is deterministic population update always better?

“One common aspect of these first-generation multi-objective algorithms is that 
they did not use any elite-preservation operator, thereby compromising the 
performance and was also contrary to Rudolph’s asymptotic convergence proof 
which required the preservation of elites from one generation to the next.”

K. Deb An Interview with Kalyanmoy Deb 2022 ACM Fellow

NO!

Motivation
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Expected number of generations of SMS-EMOA and NSGA-II for solving the OneJumpZeroJump 
[Doerr and Zheng, AAAI’21] and bi-objective RealRoyalroad [Dang et al., AAAI’23] problems

Population update OneJumpZeroJump Bi-objective RealRoyalroad

SMS-
EMOA

Deterministic
𝑂 𝜇𝑛" [𝜇 ≥ 𝑛 − 2𝑘 + 3] 𝑂 𝜇𝑛#/%&' [𝜇 ≥ 2𝑛/5 + 1]

𝛺 𝑛" [𝑛 − 2𝑘 = 𝛺 𝑛 ∧ 𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ] 𝛺 𝑛#/%&! [𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ]

Stochastic 𝑂 𝜇'𝑛"/2"/( [𝜇 ≥ 2 𝑛 − 2𝑘 + 4 ] 𝑂 𝜇'𝑛#/%/2#/') [𝜇 ≥ 2 2𝑛/5 + 2 ]

NSGA-II
Deterministic 𝛺 𝑛"/𝜇 [𝑛 − 2𝑘 = 𝛺 𝑛 ∧ 𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ] 𝛺 𝑛#/%&!/𝜇 [𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ]

Stochastic 𝑂 𝑘 𝑛/2 " [𝜇 ≥ 8 𝑛 − 2𝑘 + 3 ] 𝑂 𝑛 20𝑒' #/% [𝜇 ≥ 8 2𝑛/5 + 1 ]

Green color: results of our IJCAI’23 work; Yellow color: extended results
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For example, for SMS-EMOA solving the OneJumpZeroJump problem

Expected 
running time accelerated by 2!/#/𝜇$𝛺 𝑛] 𝑂(𝜇%𝑛]/2]/+ )

Stochastic

Population update OneJumpZeroJump Bi-objective RealRoyalroad

SMS-
EMOA

Deterministic
𝑂 𝜇𝑛" [𝜇 ≥ 𝑛 − 2𝑘 + 3] 𝑂 𝜇𝑛#/%&' [𝜇 ≥ 2𝑛/5 + 1]

𝛺 𝑛" [𝑛 − 2𝑘 = 𝛺 𝑛 ∧ 𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ] 𝛺 𝑛#/%&! [𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ]

Stochastic 𝑂 𝜇'𝑛"/2"/( [𝜇 ≥ 2 𝑛 − 2𝑘 + 4 ] 𝑂 𝜇'𝑛#/%/2#/') [𝜇 ≥ 2 2𝑛/5 + 2 ]

NSGA-II
Deterministic 𝛺 𝑛"/𝜇 [𝑛 − 2𝑘 = 𝛺 𝑛 ∧ 𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ] 𝛺 𝑛#/%&!/𝜇 [𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ]

Stochastic 𝑂 𝑘 𝑛/2 " [𝜇 ≥ 8 𝑛 − 2𝑘 + 3 ] 𝑂 𝑛 20𝑒' #/% [𝜇 ≥ 8 2𝑛/5 + 1 ]

exponential acceleration if
𝑘 = Ω 𝑛 ∧ 𝑘 = 𝑛/2 − Ω 𝑛
2 𝑛 − 2𝑘 + 4 ≤ 𝜇 = 𝑝𝑜𝑙𝑦 𝑛
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Definition of OneJumpZeroJump:

𝑓"(𝒙) = +𝑘 + |𝒙|",  if |𝒙|" ≤ 𝑛 − 𝑘 or 𝒙 = 1,
𝑛 − |𝒙|",  else 

𝑓#(𝒙) = +𝑘 + |𝒙|-,  if |𝒙|- ≤ 𝑛 − 𝑘 or 𝒙 = 0,
𝑛 − |𝒙|-,  else 

Illustration of function values 
when 𝑛 = 20 and 𝑘 = 5

Characterize a class of problems where some 
adjacent Pareto optimal solutions in the objective 
space locate far away in the decision space

Pareto front

Large
gap• Pareto set: {𝒙 ∣ 𝒙 " ∈ 𝑘. . 𝑛 − 𝑘 ∪ {0, 𝑛}}

• Pareto front: {(𝑎, 𝑛 + 2𝑘 − 𝑎) ∣ 𝑎 ∈ [2𝑘. . 𝑛] ∪ {𝑘, 𝑛 + 𝑘}}
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Population Update of SMS-EMOA:
Use non-dominated sorting and quality indicators (e.g., hypervolume) to rank the 
solutions, and delete the worst solution

hypervolume
loss calculation

the current 
population

𝑅$

𝑅%
one 

offspring 
solution

the next 
populationnon-dominated 

sorting 
𝑃

𝒙′
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Theorem. For SMS-EMOA solving OneJumpZeroJump with 𝑛 − 2𝑘 = 𝛩(𝑛), if using a 
population size 𝜇 such that 𝜇 = poly (𝑛), then the expected number of generations for 
finding the Pareto front is 𝛺 𝑛] .

Proof sketch:

• all the solutions in the initial population belong to the 
inner part of the Pareto front with probability 1 − 𝑜(1)

• the solution with number of 1-bits in 1, 𝑘 − 1 ∪ [𝑛 −
𝑘 + 1, 𝑛 − 1] cannot be maintained

• the extreme solution 1` (and 0`) can only be generated 
by flipping 𝑘 bits of a solution simultaneously (whose 
probability is at most 1/𝑛])

Jump

24
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The difference:
the removed solution is 
selected from a subset 𝑄′ of 𝑄, 
instead of the entire set 𝑄

random 
selection 

unsel-
ected

sele-
cted

𝑅%
𝑅$

non-dominated sorting and 
hypervolume loss calculation

1. 𝑄& ← ⌊ 𝑄 /2⌋ solutions uniformly and randomly
selected from 𝑄 without replacement

2. partition 𝑄′ into non-dominated sets 𝑅%, 𝑅$, … , 𝑅'
3. let 𝒛 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝒙∈*#
𝛥𝒓(𝒙, 𝑅')

4. return 𝑄 ∖ 𝒛

Procedure of stochastic population update

Non-dominated sorting for 𝑄′
Hypervolume loss calculation

Preselection: select a subset 𝑄′ of 𝑄

Union of the current population 
and the offspring solution
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Theorem. For SMS-EMOA solving OneJumpZeroJump, if using stochastic population 
update, and a population size 𝜇 such that 𝜇 ≥ 2(𝑛 − 2𝑘 + 4), then the expected 
number of generations for finding the Pareto front is 𝑂(𝜇%𝑛]/2]/+ ).

Lemma. For SMS-EMOA solving OneJumpZeroJump, if using stochastic population 
update, and a population size 𝜇 such that 𝜇 ≥ 2(𝑛 − 2𝑘 + 4), then 
• an objective vector 𝒇∗ in the Pareto front will always be maintained once it has 

been found
• any solution in 𝑃 ∪ {𝒙′} can be maintained in the next population with 

probability at least 1/2

The offspring solution produced 
in the current generation

The current 
population
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Proof sketch:

• find a solution in the inner part of the Pareto set: 𝑂 𝜇𝑘.

• find the whole inner part of the Pareto front: 𝑂 𝜇𝑛 log 𝑛

• the extreme solution 1` (or 0`) can be generated by 
gradually flipping the 0-bits (or 1-bits)

Use additive drift [He and Yao, AIJ’01]

Theorem. For SMS-EMOA solving OneJumpZeroJump, if using stochastic population 
update, and a population size 𝜇 such that 𝜇 ≥ 2(𝑛 − 2𝑘 + 4), then the expected 
number of generations for finding the Pareto front is 𝑂(𝜇%𝑛]/2]/+ ).
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Proof sketch:
Use additive drift [He and Yao, AIJ’01]: consider the change of max

𝒙∈,
𝒙 %

• the distance function is defined as

𝑉 𝑃 =

0 if	max
*∈,

𝑥 ! = 𝑛,

𝑒𝜇𝑛 ⁄" ' if	𝑛 − 𝑘/2 ≤ max
*∈,

𝑥 ! ≤ 𝑛 − 1,

𝑒𝜇𝑛 ⁄" ' + 1 if	𝑛 − 𝑘 ≤ max
*∈,

𝑥 ! < 𝑛 − 𝑘/2.

Target state

The probability of jumping to the target state is small, thus 
the distance to the target state is set to be a large value
The probability of jumping to the better state is large, thus 
the distance to the better state is set to be a small value

Theorem. For SMS-EMOA solving OneJumpZeroJump, if using stochastic population 
update, and a population size 𝜇 such that 𝜇 ≥ 2(𝑛 − 2𝑘 + 4), then the expected 
number of generations for finding the Pareto front is 𝑂(𝜇%𝑛]/2]/+ ).



http://www.lamda.nju.edu.cn/qianc/

http://www.lamda.nju.edu.cnAnalysis of SMS-EMOA Using Stochastic Population Update

Proof sketch:
Use additive drift [He and Yao, AIJ’01]: consider the change of max

𝒙∈,
𝒙 %

if 𝑛 − 𝑘/2 ≤ 𝑞 ≔ max
/∈1

𝑥 " ≤ 𝑛 − 1
• expected decrease of 𝑉: (1/ 𝑒𝜇𝑛,23 ⋅ 𝑒𝜇𝑛./# 	 ≥ 1

Theorem. For SMS-EMOA solving OneJumpZeroJump, if using stochastic population 
update, and a population size 𝜇 such that 𝜇 ≥ 2(𝑛 − 2𝑘 + 4), then the expected 
number of generations for finding the Pareto front is 𝑂(𝜇%𝑛]/2]/+ ).

Prob. of generating 1- Change of 𝑉

• expected change of 𝑉: 1/2

• expected increase of 𝑉: 1/2 ⋅ 1
Prob. of losing the solution with 𝑞 1-bits

Change of 𝑉
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Proof sketch:
Use additive drift [He and Yao, AIJ’01]: consider the change of max

𝒙∈,
𝒙 %

if 𝑛 − 𝑘 ≤ 𝑞 ≔ max
/∈1

𝑥 " < 𝑛 − 𝑘/2

• expected decrease of 𝑉: ./#
./5 /(2𝑒𝜇𝑛./#) ⋅ 1

Theorem. For SMS-EMOA solving OneJumpZeroJump, if using stochastic population 
update, and a population size 𝜇 such that 𝜇 ≥ 2(𝑛 − 2𝑘 + 4), then the expected 
number of generations for finding the Pareto front is 𝑂(𝜇%𝑛]/2]/+ ).

Prob. of decreasing 𝑉 Change of 𝑉

• 𝑉 cannot increase because the solution with (𝑛 − 𝑘) 1-bits 
will always be maintained 

• expected change of 𝑉: ./#
./5 / 2𝑒𝜇𝑛./# ≥ 2./5/(2𝑒𝜇𝑛./#)
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Proof sketch:
Use additive drift [He and Yao, AIJ’01]: consider the change of max

𝒙∈,
𝒙 %

Combining the analysis of the two cases

Theorem. For SMS-EMOA solving OneJumpZeroJump, if using stochastic population 
update, and a population size 𝜇 such that 𝜇 ≥ 2(𝑛 − 2𝑘 + 4), then the expected 
number of generations for finding the Pareto front is 𝑂(𝜇%𝑛]/2]/+ ).

• expected change of 𝑉: 2./5/(2𝑒𝜇𝑛./#)

• expected number of generations for finding 1,: 
O(𝜇#𝑛./2./5)

• 𝑉 𝑃 ≤ 𝑒𝜇𝑛 ⁄. # + 1
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For SMS-EMOA solving the OneJumpZeroJump problem

Population update OneJumpZeroJump Bi-objective RealRoyalroad

SMS-
EMOA

Deterministic
𝑂 𝜇𝑛" [𝜇 ≥ 𝑛 − 2𝑘 + 3] 𝑂 𝜇𝑛#/%&' [𝜇 ≥ 2𝑛/5 + 1]

𝛺 𝑛" [𝑛 − 2𝑘 = 𝛺 𝑛 ∧ 𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ] 𝛺 𝑛#/%&! [𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ]

Stochastic 𝑂 𝜇'𝑛"/2"/( [𝜇 ≥ 2 𝑛 − 2𝑘 + 4 ] 𝑂 𝜇'𝑛#/%/2#/') [𝜇 ≥ 2 2𝑛/5 + 2 ]

NSGA-II
Deterministic 𝛺 𝑛"/𝜇 [𝑛 − 2𝑘 = 𝛺 𝑛 ∧ 𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ] 𝛺 𝑛#/%&!/𝜇 [𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ]

Stochastic 𝑂 𝑘 𝑛/2 " [𝜇 ≥ 8 𝑛 − 2𝑘 + 3 ] 𝑂 𝑛 20𝑒' #/% [𝜇 ≥ 8 2𝑛/5 + 1 ]

Expected 
running time accelerated by 2!/#/𝜇$𝛺 𝑛] 𝑂(𝜇%𝑛]/2]/+ )

Stochastic exponential acceleration if
𝑘 = Ω 𝑛 ∧ 𝑘 = 𝑛/2 − Ω 𝑛
2 𝑛 − 2𝑘 + 4 ≤ 𝜇 = 𝑝𝑜𝑙𝑦 𝑛
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By introducing randomness into population update, MOEAs can go across inferior regions 
between different Pareto optimal solutions more easily

Ø Stochastic

Ø Deterministic
• prefers non-dominated solutions
• if objective vectors in the Pareto front are far 

away in the solution space, easy to get trapped

• allows dominated solutions to participate 
in the evolutionary process

• follows an easier path in the solution space to 
find adjacent points in the Pareto front

Solution Space

: Pareto optimal solutions
: dominated solutions

large gap

small gap

Intuitive Explanation
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For NSGA-II solving the bi-objective RealRoyalroad problem

Expected 
running time accelerated by 𝑛/ 20𝑒' #/%/(𝜇𝑛')Ω 𝑛`/m6$/𝜇 𝑂 𝑛 20𝑒% `/m

Stochastic

Population update OneJumpZeroJump Bi-objective RealRoyalroad

SMS-
EMOA

Deterministic
𝑂 𝜇𝑛" [𝜇 ≥ 𝑛 − 2𝑘 + 3] 𝑂 𝜇𝑛#/%&' [𝜇 ≥ 2𝑛/5 + 1]

𝛺 𝑛" [𝑛 − 2𝑘 = 𝛺 𝑛 ∧ 𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ] 𝛺 𝑛#/%&! [𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ]

Stochastic 𝑂 𝜇'𝑛"/2"/( [𝜇 ≥ 2 𝑛 − 2𝑘 + 4 ] 𝑂 𝜇'𝑛#/%/2#/') [𝜇 ≥ 2 2𝑛/5 + 2 ]

NSGA-II
Deterministic 𝛺 𝑛"/𝜇 [𝑛 − 2𝑘 = 𝛺 𝑛 ∧ 𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ] 𝛺 𝑛#/%&!/𝜇 [𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ]

Stochastic 𝑂 𝑘 𝑛/2 " [𝜇 ≥ 8 𝑛 − 2𝑘 + 3 ] 𝑂 𝑛 20𝑒' #/% [𝜇 ≥ 8 2𝑛/5 + 1 ]



http://www.lamda.nju.edu.cnBi-objective RealRoyalroad Problem

𝒇 (𝒙) = +(𝑛|𝒙|" + TZ 𝒙 , 𝑛|𝒙|" + LZ 𝒙 ),  if 𝒙 ∈ 𝐻 ∪ 𝐺;
0, 0 , else, 

where H = 𝒙 𝒙 " = 4𝑛/5 ∧ TZ 𝒙 + LZ 𝒙 = 𝑛/5
and 𝐺 = 𝒙 𝒙 " ≤ 3𝑛/5

Illustration of function values 
when 𝑛 = 5

35

Definition of bi-objective RealRoyalroad:
Pareto front

Characterize a class of problems where a large gap 
exists between the Pareto front and the second front 
in the decision space

• Pareto set: 𝐻
• Pareto front:{(4𝑛#/5 + 𝑎, 4𝑛#/5 + 𝑛/5 − 𝑎) ∣ 𝑎 ∈ [0. . 𝑛/5]}

#leading 0-bits #trailing 0-bits 

Have 3𝑛/5
1-bits

Have (3𝑛/5 − 1)
1-bits

Have 4𝑛/5
1-bits

e.g., 𝐻 ={11110, 01111} for 𝑛 = 5

𝒙 𝒙 % = 3𝑛/5 ∧ TZ 𝒙 + LZ 𝒙 = 2𝑛/5
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Population Update of NSGA-II:
Use non-dominated sorting and crowding distance sorting to rank the solutions, and 
delete the worst ones

crowding 
distance 
sorting

the current 
population

𝑅$

𝑅%

𝑅*
𝑅+

the offspring 
population

the next 
populationnon-dominated 

sorting 

NSGA-II

𝑃

𝑃′
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Theorem. For NSGA-II solving bi-objective RealRoyalroad, if using a population size 𝜇
such that 𝜇 = poly (𝑛), then the expected number of generations for finding the 
Pareto front is 𝛺 𝑛`/m6$/𝜇 .

Proof sketch:

• all the solutions in the initial population have at most 
3𝑛/5 1-bits with probability 1 − 𝑜(1)

• the solution with more than 3𝑛/5 1-bits (not in 𝐻) has 
the objective vector (0,0), and cannot be maintained

• the solutions in 𝐻 can only be generated by flipping at 
least 𝑛/5 bits of a solution simultaneously

Jump

37

Have 3𝑛/5
1-bits

Have 4𝑛/5
1-bits
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crowding 
distance 
sorting

the current 
population 𝑅%

𝑅$

𝑅.
𝑅#

the offspring 
population

the next 
population

non-dominated 
sorting 

The removed solutions are selected from a random subset of 𝑃 ∪ 𝑃′, instead of the entire set

random 
selection 

unsel-
ected

⌊3𝜇/2⌋
solu-
tions

𝑃

𝑃′

⌈𝜇/2⌉ solutions are directly maintained

3𝜇/2 solutions are selected for competition, 
where ⌊𝜇/2⌋ of them can survive

𝜇/2 solutions 
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Theorem. For NSGA-II solving bi-objective RealRoyalroad, if using stochastic population 
update and a population size 𝜇 such that 𝜇 ≥ 8(2𝑛/5 + 1), then the expected number of 
generations for finding the Pareto front is 𝑂 𝑛 20𝑒% `/m .

Proof sketch:
• a solution with 3𝑛/5 1-bits can be found in 𝑂 𝑛 log 𝑛
• a solution in 𝐺; = 0<1=,/>0#,/>2< 0 ≤ 𝑖 ≤ 2𝑛/5} can be 

found in 𝑂 𝑛=

• all the solutions in 𝐺;can be found in 𝑂(𝑛=)
• a Pareto optimal solution can be found in 𝑂 𝑛 20𝑒$ -//

• all the Pareto optimal solutions can be found in 𝑂(𝑛=)

39

Use “lucky way” argument [Doerr, TCS’21]

Have 3𝑛/5
1-bits

Have 4𝑛/5
1-bits

Walk in the 
decision space

Have (3𝑛/5 − 1)
1-bits
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Theorem. For NSGA-II solving bi-objective RealRoyalroad, if using stochastic population 
update and a population size 𝜇 such that 𝜇 ≥ 8(2𝑛/5 + 1), then the expected number of 
generations for finding the Pareto front is 𝑂 𝑛 20𝑒% `/m .

Proof sketch:

40

Use “lucky way” argument [Doerr, TCS’21]
• consider a phase of consecutive 𝑛/5 generations

Have 3𝑛/5
1-bits

Have 4𝑛/5
1-bits

Walk in the 
decision space

Have (3𝑛/5 − 1)
1-bits

find a solution 𝒙 with
𝒙 ! = 3𝑛/5 + 1 

and TZ 𝒙 ≥ 𝑛/5
1.-//0$-// 

any solution can survive 
with prob. at least 1/4

with prob. at least
𝑛/5 / 𝑒𝑛 ⋅ (1/4)

1#-//0-// 
Pareto optimal

find a solution 𝒙 with
𝒙 ! = 3𝑛/5 +2 

and TZ 𝒙 ≥ 𝑛/5
...with prob. at least

𝑛/5 − 1 / 𝑒𝑛 ⋅ (1/4)
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Theorem. For NSGA-II solving bi-objective RealRoyalroad, if using stochastic population 
update and a population size 𝜇 such that 𝜇 ≥ 8(2𝑛/5 + 1), then the expected number of 
generations for finding the Pareto front is 𝑂 𝑛 20𝑒% `/m .

Proof sketch:

41

Use “lucky way” argument [Doerr, TCS’21]
• consider a phase of consecutive 𝑛/5 generations

Have 3𝑛/5
1-bits

Have 4𝑛/5
1-bits

Walk in the 
decision space

Have (3𝑛/5 − 1)
1-bits

1#-//0-// ...1.-//0$-// 
Pareto

optimal

• the probability of the above event is at least 
∏<?"
,/>(𝑛/5 − 𝑖 + 1)/(4𝑒𝑛) ≥ 2/ 20𝑒# ,/>

• the expected number of generations of finding a Pareto 
optimal solution: 20𝑒# ,/>/2 ⋅ (𝑛/5)
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For NSGA-II solving the bi-objective RealRoyalroad problem

Expected 
running time accelerated by 𝑛/ 20𝑒' #/%/(𝜇𝑛')𝛺 𝑛`/m6$/𝜇 𝑂 𝑛 20𝑒% `/m

Stochastic

Population update OneJumpZeroJump Bi-objective RealRoyalroad

SMS-
EMOA

Deterministic
𝑂 𝜇𝑛" [𝜇 ≥ 𝑛 − 2𝑘 + 3] 𝑂 𝜇𝑛#/%&' [𝜇 ≥ 2𝑛/5 + 1]

𝛺 𝑛" [𝑛 − 2𝑘 = 𝛺 𝑛 ∧ 𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ] 𝛺 𝑛#/%&! [𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ]

Stochastic 𝑂 𝜇'𝑛"/2"/( [𝜇 ≥ 2 𝑛 − 2𝑘 + 4 ] 𝑂 𝜇'𝑛#/%/2#/') [𝜇 ≥ 2 2𝑛/5 + 2 ]

NSGA-II
Deterministic 𝛺 𝑛"/𝜇 [𝑛 − 2𝑘 = 𝛺 𝑛 ∧ 𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ] 𝛺 𝑛#/%&!/𝜇 [𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ]

Stochastic 𝑂 𝑘 𝑛/2 " [𝜇 ≥ 8 𝑛 − 2𝑘 + 3 ] 𝑂 𝑛 20𝑒' #/% [𝜇 ≥ 8 2𝑛/5 + 1 ]
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By introducing randomness into population update, MOEAs can go across inferior regions 
between Pareto optimal solutions and sub-optimal solutions 

Ø Stochastic

Ø Deterministic
• prefers non-dominated solutions
• if Pareto optimal solutions are far away from 

sub-optimal solutions in the solution space, easy 
to get trapped

• allows dominated solutions to participate 
in the evolutionary process

• follows an easier path in the solution space to find 
Pareto optimal solutions from sub-optimal solutions

Intuitive Explanation

Solution Space

: Pareto optimal solutions
: dominated solutions
: sub-optimal solutions

large gap

small gap
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Population update OneJumpZeroJump Bi-objective RealRoyalroad

SMS-
EMOA

Deterministic
𝑂 𝜇𝑛" [𝜇 ≥ 𝑛 − 2𝑘 + 3] 𝑂 𝜇𝑛#/%&' [𝜇 ≥ 2𝑛/5 + 1]

𝛺 𝑛" [𝑛 − 2𝑘 = 𝛺 𝑛 ∧ 𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ] 𝛺 𝑛#/%&! [𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ]

Stochastic 𝑂 𝜇'𝑛"/2"/( [𝜇 ≥ 2 𝑛 − 2𝑘 + 4 ] 𝑂 𝜇'𝑛#/%/2#/') [𝜇 ≥ 2 2𝑛/5 + 2 ]

NSGA-II
Deterministic 𝛺 𝑛"/𝜇 [𝑛 − 2𝑘 = 𝛺 𝑛 ∧ 𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ] 𝛺 𝑛#/%&!/𝜇 [𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ]

Stochastic 𝑂 𝑘 𝑛/2 " [𝜇 ≥ 8 𝑛 − 2𝑘 + 3 ] 𝑂 𝑛 20𝑒' #/% [𝜇 ≥ 8 2𝑛/5 + 1 ]

Green color: results of our IJCAI’23 work; Yellow color: extended results

Expected number of generations of SMS-EMOA and NSGA-II for solving the OneJumpZeroJump 
[Doerr and Zheng, AAAI’21] and bi-objective RealRoyalroad [Dang et al., AAAI’23] problems
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By introducing randomness into population update, MOEAs can go across inferior regions around 
the Pareto optimal solutions more easily, thus facilitating to find the whole Pareto front

Intuitive Explanation

Solution Space

: Pareto optimal solutions       : dominated solutions      : sub-optimal solutions

large gap

small gap

a large gap exists 
between Pareto optimal 

solutions and sub-
optimal solutions

Solution Space

large gap

small gap

a large gap exists 
between different 

Pareto optimal 
solutions
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Estimated number of generations (average of 1000 independent runs) of SMS-EMOA and 
NSGA-II for solving the OneJumpZeroJump and bi-objective RealRoyalroad problems

Experiments

OneJumpZeroJump 
with 𝑘 = 2

Bi-objective 
RealRoyalroad

SMS-EMOA NSGA-II

𝑛 = 5 𝑛 = 10 𝑛 = 15 𝑛 = 20 𝑛 = 25

SMS-EMOA Deterministic 43 704 6572 202558 10792477
Stochastic 46 702 5747 144222 5797043

NSGA-II Deterministic 2 27 143 1858 73001
Stochastic 2 25 121 724 10757

Stochastic population update can bring a clear acceleration
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• Prove that stochastic population update can significantly decrease the expected running time

Population
update 

OneJumpZeroJump
[Doerr and Zheng, AAAI’21]

Bi-objective RealRoyalroad
[Dang et al., AAAI’23] 

SMS-
EMOA

Deterministic
𝑂 𝜇𝑛" [𝜇 ≥ 𝑛 − 2𝑘 + 3] 𝑂 𝜇𝑛#/%&' [𝜇 ≥ 2𝑛/5 + 1]

𝛺 𝑛" [𝑛 − 2𝑘 = 𝛺 𝑛 ∧ 𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ] 𝛺 𝑛#/%&! [𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ]

Stochastic 𝑂 𝜇'𝑛"/2"/( [𝜇 ≥ 2 𝑛 − 2𝑘 + 4 ] 𝑂 𝜇'𝑛#/%/2#/') [𝜇 ≥ 2 2𝑛/5 + 2 ]

NSGA-II
Deterministic 𝛺 𝑛"/𝜇 [𝑛 − 2𝑘 = 𝛺 𝑛 ∧ 𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ] 𝛺 𝑛#/%&!/𝜇 [𝜇 = 𝑝𝑜𝑙𝑦 𝑛 ]

Stochastic 𝑂 𝑘 𝑛/2 " [𝜇 ≥ 8 𝑛 − 2𝑘 + 3 ] 𝑂 𝑛 20𝑒' #/% [𝜇 ≥ 8 2𝑛/5 + 1 ]

• Challenge the common practice of MOEAs, i.e., greedy and deterministic population update 
• Encourage the exploration of developing new MOEAs in the area

Popular 
MOEAs
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On knapsack with 100 items

Similar observation

On NK-Landscape with 𝑛 = 200 and 𝑘 = 10

NSGA-II vs. Non-elitist MOEA (NE-MOEA)

The recent empirical study [Liang, Li and Lehre, GECCO’23] shows that non-elitist population 
update (the generated offspring solutions form the next population directly) can be helpful
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A subsequent theoretical study [Zheng and Doerr, AAAI’24] considers SMS-EMOA solving the 
many-objective 𝑚OneJumpZeroJump problem, and confirms the same advantage of using 
stochastic population update A direct extension of OneJumpZeroJump, 

which has 𝑚 objectives

Size of the Pareto front, 
i.e., 2𝑛/𝑚 − 2𝑘 + 3 0/$

accelerated by 2!/$/(𝑀𝑘%/$) 
𝑂(𝑀%𝑛]) 𝑂((𝑀𝑘$/%/2]/%) ⋅ 𝑀%𝑛])

Expected number of generations for 𝜇 = Θ(𝑀):

deterministic 
population update

stochastic 
population update

exponential if 𝑚 is not too large (e.g., constant), 
and 𝑘 is large (e.g., 𝛩 𝑛 )
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Finally, I will give a brief review of 
running time analysis of MOEAs
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GSEMO SEMO

LeadingOnesTrailingZeroes
𝑂 𝑛. [Giel, CEC’03]
𝛺 𝑛$/𝑝 [Doerr et al., CEC’13]

𝛩 𝑛. [Laumanns et al, TEC’04]

CountOnesCountZeroes 𝑂(𝑛$ log 𝑛) [Qian et al., AIJ’13] 𝑂(𝑛$ log 𝑛) [Laumanns et al, TEC’04]

OneMinMax 𝑂(𝑛$ log 𝑛) [Giel and Lehre, ECJ’10] 𝑂(𝑛$ log 𝑛) [Giel and Lehre, ECJ’10]

OneJumpZeroJump 𝑂( 𝑛 − 2𝑘 𝑛!)
[Zheng and Doerr, ECJ’23]

cannot find the Pareto front
[Zheng and Doerr, ECJ’23]

Summary of GSEMO and SEMO solving multi-objective synthetic problems:

GSEMO: a simple MOEA which employs bit-wise mutation to generate an offspring 
solution in each iteration and keeps the non-dominated solutions in the population

SEMO: a counterpart of GSEMO which employs one-bit mutation
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GSEMO
• multi-objective minimum spanning tree [Neumann, EJOR’07; Qian et al., AIJ’13]

DEMO  (diversity evolutionary multiobjective optimizer)
• multi-objective shortest path [Horoba, FOGA’09; Neumann and Theile, PPSN’10]

GSEMO 
• multi-objective knapsack [Laumanns et al, NC’04]

52

GSEMO: a simple MOEA which employs bit-wise mutation to generate an offspring 
solution in each iteration and keeps the non-dominated solutions in the population
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53

Brief review:
• greedy selection [Laumanns et al., TEC’04]
• crossover [Qian et al., AIJ’13; Dang et al., AAAI’23]
• diversity-based parent selection [Osuna et al., 2020]
• Selection hyper-heuristics [Qian et al., PPSN’16]
• diversity [Friedrich et al., TCS’10]
• fairness [Laumanns et al., TEC’04; Friedrich et al., 2011]

For example, recombination can accelerate the filling of the Pareto front by 
recombining diverse Pareto optimal solutions [Qian et al., AIJ’13]
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[Zheng, Liu and Doerr, AAAI’22] analyzed the expected running time of NSGA-II (without 
crossover) for the first time

Upper bound Lower bound

LeadingOnesTrailingZeroes 𝑂 𝜇𝑛$ , if 𝜇 ≥ 4(𝑛 + 1) ---------------------

OneMinMax 𝑂 𝜇𝑛 log 𝑛 , if 𝜇 ≥ 4(𝑛 + 1) exponential, if 𝜇 = 𝑛 + 1

population size

54

[Bian and Qian, PPSN’22] analyzed the standard NSGA-II which uses binary 
tournament selection, one-point crossover and bit-wise mutation

• solves LeadingOnesTrailingZeroes in 𝑂 𝜇𝑛%

• expected running time can be improved to 𝑂(𝜇𝑛) if using stochastic 
tournament selection strategy 
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Other results of NSGA-II:
• OneMinMax: Ω 𝜇𝑛 log 𝑛 , if 𝜇 = 𝑐(𝑛 + 1) for some 𝑐 ≥ 4 [Doerr and Qu, AAAI’23]
• OneJumpZeroJump:

Ø 𝛩(𝑁𝑛]), where 𝜇 ≥ 4 𝑛 − 2𝑘 + 3 [Doerr and Qu, TEC’23; Doerr and Qu, AAAI’23]

Ø bit-wise mutation and uniform crossover: 𝑂 q"(r`)#

(]6$)! , 

where 𝜇 = 𝑐 𝑛 − 2𝑘 + 3 and 𝑐 > 4, 𝐶 = +t
t6+

%
[Doerr and Qu, AAAI’23]

NSGA-II solving bi-objective MST [Cerf et al., IJCAI’23]: 𝑂(𝑚%𝑛𝑤:;< log 𝑛𝑤:;<)

55

NSGA-III solving 3OneMinMax [Wietheger and Doerr, IJCAI’23]: 𝑂(𝑛 log 𝑛)
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Analysis of SIBEA (a simple indicator based MOEA):
• LeadingOnesTrailingZeroes: 𝑂(𝜇𝑛%) [Brockhoff et al., PPSN’08]
• OneMinMax: 𝑂(𝜇𝑛 log 𝑛) [Nguyen et al., TCS’15]

Analysis of MOEA/D:
• MOEA/D with Tchbycheff decomposition [Li et al., TEC’16]

Ø CountOnesCountZeroes: 𝑂(𝑛% 𝑙𝑜𝑔 𝑛)
Ø LPTNO (an extension of LeadingOnesTrailingZeroes): 𝑂(𝑛*)

• comparison of different decomposition methods [Huang et al., IJCAI’21]
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Our work contributes to running time analysis of a major type of MOEAs, i.e., 
combining non-dominated sorting and quality indicators, for the first time

SMS-EMOA solving OneJumpZeroJump: 𝑂 𝜇𝑛] ∧ 𝛺(𝑛]) [Bian et al., IJCAI’23]
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Posterior noise [Dang et al., GECCO’23]:
• noise model: (𝛿, 𝑝)-Bernoulli noise model (𝛿 > 𝑓:;< − 𝑓:=> )

• result: the expected running time of GSEMO and NSGA-II solving LeadingOnesTrailingZeroes
is exponential and 𝑂 𝜇𝑛% , respectively
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Prior noise [Dinot et al., IJCAI’23] :
• one-bit noise: flips a uniformly chosen bit of a solution with prob. 𝑝 before evaluation
• result: the expected running time of SEMO without reevaluation solving OneMinMax

is 𝑂(𝑛% log 𝑛), better than that using reevaluation

�̀� (𝒙) = +𝒇 𝒙 + 𝛿 ⋅ 𝟏, with probability 𝑝,  
𝒇 𝒙 , otherwiseNoisy 

objective vector
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Previous running time analysis of MOEAs mainly focuses on simple MOEAs, while 
recently, researchers have started to analyze practical MOEAs

(G)SEMO on 
synthetic 
problems

(G)SEMO on 
combinatorial 

problems

Effectiveness of 
some strategies 

based on (G)SEMO 

Analysis of 
practical 
MOEAs

Thank you
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Analysis of 
MOEAs

under noise

Many theoretical works can be done in MOEAs


